Properties of Exponents 6.1

For use with Exploration 6.1

Essential Question How can you write general rules involving properties of exponents?

EXPLORATION: Writing Rules for Properties of Exponents

Work with a partner.

a. What happens when you multiply two powers with the same base? Write the product of the two powers as a single power. Then write a general rule for finding the product of two powers with the same base.

i.
$$(2^2)(2^3) =$$

ii. $(4^1)(4^5) =$ _____
iii. $(5^3)(5^5) =$ _____
iv. $(x^2)(x^6) =$ _____

b. What happens when you divide two powers with the same base? Write the quotient of the two powers as a single power. Then write a general rule for finding the quotient of two powers with the same base.

i.
$$\frac{4^3}{4^2} =$$
_____ ii. $\frac{2^5}{2^2} =$ _____

iii.
$$\frac{x^6}{x^3} =$$
_____ iv. $\frac{3^4}{3^4} =$ _____

c. What happens when you find a power of a power? Write the expression as a single power. Then write a general rule for finding a power of a power.

i.
$$(2^2)^4 =$$
 _____ ii. $(7^3)^2 =$ _____
iii. $(y^3)^3 =$ _____ iv. $(x^4)^2 =$ _____

6.1 Properties of Exponents (continued)

EXPLORATION: Writing Rules for Properties of Exponents (continued)

- **d.** What happens when you find a power of a product? Write the expression as the product of two powers. Then write a *general rule* for finding a power of a product.
 - i. $(2 \bullet 5)^2 =$ _____ ii. $(5 \bullet 4)^3 =$ _____

iii. $(6a)^2 =$ _____

iv. $(3x)^2 =$ _____

e. What happens when you find a power of a quotient? Write the expression as the quotient of two powers. Then write a *general rule* for finding a power of a quotient.

Communicate Your Answer

- 2. How can you write general rules involving properties of exponents?
- There are 3³ small cubes in the cube below.
 Write an expression for the number of small cubes in the large cube at the right.

6.1 Notetaking with Vocabulary For use after Lesson 6.1

In your own words, write the meaning of each vocabulary term.

power

exponent

base

scientific notation

Core Concepts

Zero Exponent

Words For any nonzero number $a, a^0 = 1$. The power 0^0 is undefined.

Numbers $4^0 = 1$ Algebra $a^0 = 1$, where $a \neq 0$

Negative Exponents

Words For any integer *n* and any nonzero number a, a^{-n} is the reciprocal of a^n .

Numbers $4^{-2} = \frac{1}{4^2}$ Algebra $a^{-n} = \frac{1}{a^n}$, where $a \neq 0$

Notes:

6.1 Notetaking with Vocabulary (continued)

Product of Powers Property

Let *a* be a real number, and let *m* and *n* be integers.

Words To multiply powers with the same base, add their exponents.

Numbers $4^6 \bullet 4^3 = 4^{6+3} = 4^9$ Algebra $a^m \bullet a^n = a^{m+n}$

Quotient of Powers Property

Let *a* be a nonzero real number, and let *m* and *n* be integers.

Words To divide powers with the same base, subtract their exponents.

Numbers
$$\frac{4^6}{4^3} = 4^{6-3} = 4^3$$
 Algebra $\frac{a^m}{a^n} = a^{m-n}$, where $a \neq 0$

Power of a Power Property

Let *a* be a real number, and let *m* and *n* be integers.

Words To find a power of a power, multiply the exponents.

Numbers $(4^6)^3 = 4^{6 \cdot 3} = 4^{18}$ Algebra $(a^m)^n = a^{mn}$

Notes:

Power of a Product Property

Let *a* and *b* be real numbers, and let *m* be an integer.

Words To find a power of a product, find the power of each factor and multiply.

Numbers $(3 \bullet 2)^5 = 3^5 \bullet 2^5$ Algebra $(ab)^m = a^m b^m$

Power of a Quotient Property

Let a and b be real numbers with $b \neq 0$, and let m be an integer.

Words To find the power of a quotient, find the power of the numerator and the power of the denominator and divide.

Numbers
$$\left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5}$$
 Algebra $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$, where $b \neq 0$

Notes:

6.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–8, evaluate the expression.

1.
$$3^{0}$$
 2. $(-2)^{0}$ **3.** 3^{-4} **4.** $(-4)^{-3}$
5. $\frac{2^{-3}}{5^{0}}$ **6.** $\frac{-3^{-2}}{2^{-3}}$ **7.** $\frac{4^{-1}}{-7^{0}}$ **8.** $\frac{3^{-1}}{(-5)^{0}}$

In Exercises 9–23, simplify the expression. Write your answer using only positive exponents.

9. z^{0} 10. a^{-8} 11. $6a^{0}b^{-2}$ 12. $14m^{-4}n^{0}$ 13. $\frac{3^{-2}r^{-3}}{s^{0}}$ 14. $\frac{2^{3}a^{-3}}{8^{-1}b^{-5}c^{0}}$ 15. $\frac{3^{5}}{3^{3}}$ 16. $\frac{(-2)^{7}}{(-2)^{5}}$ 17. $(-5)^{3} \cdot (-5)^{3}$ 18. $(q^{5})^{3}$ 19. $(a^{-4})^{2}$ 20. $\frac{c^{4} \cdot c^{3}}{c^{6}}$ 21. $(-4d)^{4}$ 22. $(-3f)^{-3}$ 23. $\left(\frac{4}{x}\right)^{-3}$

24. A rectangular prism has length x, width $\frac{x}{2}$, and height $\frac{x}{3}$. Which of the expressions represent the volume of the prism? Select all that apply.

A. $6^{-1}x^3$ **B.** $6^{-1}x^{-3}$ **C.** $(6x^{-3})^{-1}$ **D.** $2^{-1} \bullet 3^{-1} \bullet x^3$

162 Algebra 1 Student Journal